超要約: 非線形関数を、正確にモデル化できる新しい方法を発見!IT業界がアゲアゲになる予感💖
✨ ギャル的キラキラポイント ✨
● 非線形関数(難しい計算のこと)を、今までのやり方よりずーっと正確に表現できるんだって!計算ミスとか減っちゃうかも✨ ● AIとかデータ分析のモデルが、もっと分かりやすくなるかも!ブラックボックスじゃなくて、中身が見えるって最高じゃん? ● 複雑なシステム(例えば自動運転とか)のシミュレーション(仮想実験)も、もっと精度が上がるかも!未来が明るい~💖
続きは「らくらく論文」アプリで
Parametric representations of various functions are fundamental tools in science and engineering. This paper introduces a fixed-initial-state constant-input dynamical system (FISCIDS) representation, which provides an exact and parametric model for a broad class of nonlinear functions. A FISCIDS representation of a given nonlinear function consists of an input-affine dynamical system with a fixed initial state and constant input. The argument of the function is applied as the constant input to the input-affine system, and the value of the function is the output of the input-affine system at a fixed terminal time. We show that any differentially algebraic function has a quadratic FISCIDS representation. We also show that there exists an analytic function that is not differentially algebraic but has a quadratic FISCIDS representation. Therefore, most functions in practical problems in science and engineering can be represented by a quadratic FISCIDS representation.