iconLogo
Published:2025/8/22 16:12:04

海洋モデルをギャル化!🌊✨:IT企業向け

超要約: 海洋シミュレーション(かいようしゅみゅれーしょん)を爆速(ばくそく)&高精度(こうせいど)にする方法を見つけたよ! IT企業(あいてぃーきぎょう)向けの情報(じょうほう)だよん☆

✨ ギャル的キラキラポイント ✨

● 深層学習(しんそうがくしゅう)で、計算(けいさん)を爆速にした! 時短(じたん)は正義(せいぎ)🫶 ● アンサンブル学習(がくしゅう)で、予測(よそく)の精度(せいど)も信頼性(しんらいせい)も爆上げ⤴ ● 海洋モデル(かいようもでる)の調整(ちょうせい)が楽々(らくらく)! パラメータ感度(かんど)を可視化(かしか)したよ👀

詳細解説いくね!

続きは「らくらく論文」アプリで

Ensembles of Neural Surrogates for Parametric Sensitivity in Ocean Modeling

Yixuan Sun / Romain Egele / Sri Hari Krishna Narayana / Luke Van Roekel / Carmelo Gonzales / Steven Brus / Balu Nadiga / Sandeep Madireddy / Prasanna Balaprakash

Accurate simulations of the oceans are crucial in understanding the Earth system. Despite their efficiency, simulations at lower resolutions must rely on various uncertain parameterizations to account for unresolved processes. However, model sensitivity to parameterizations is difficult to quantify, making it challenging to tune these parameterizations to reproduce observations. Deep learning surrogates have shown promise for efficient computation of the parametric sensitivities in the form of partial derivatives, but their reliability is difficult to evaluate without ground truth derivatives. In this work, we leverage large-scale hyperparameter search and ensemble learning to improve both forward predictions, autoregressive rollout, and backward adjoint sensitivity estimation. Particularly, the ensemble method provides epistemic uncertainty of function value predictions and their derivatives, providing improved reliability of the neural surrogates in decision making.

cs / physics.ao-ph / cs.LG