iconLogo
Published:2025/12/3 12:41:12

糖尿病足潰瘍(DFU)の画像解析、AIで爆速化!✨ (TransUNet-GradCAM)

超要約: DFUをAIで自動診断!画像から潰瘍を正確に切り出し、治療をサポートするよ💖

● ViT(Vision Transformer)とU-Netのハイブリッド! 最先端AI技術で解析してるってこと! ● Grad-CAMでAIの判断根拠が丸わかり!「なんでそう判断したの?」が可視化されるの! ● データ拡張で画像解析の精度も爆上がり! いろんなDFUに対応できるってことだね!


詳細解説

背景 足の潰瘍(かいよう)って、糖尿病の人によくある合併症なの😢 治療には、潰瘍の大きさとかを正確に測るのが重要なんだけど、これが大変だったみたい。人が測ると時間かかるし、人によって測り方も違うから、正確さにも限界があったんだって💦

続きは「らくらく論文」アプリで

TransUNet-GradCAM: A Hybrid Transformer-U-Net with Self-Attention and Explainable Visualizations for Foot Ulcer Segmentation

Akwasi Asare / Mary Sagoe / Justice Williams Asare / Stephen Edward Moore

Automated segmentation of diabetic foot ulcers (DFUs) plays a critical role in clinical diagnosis, therapeutic planning, and longitudinal wound monitoring. However, this task remains challenging due to the heterogeneous appearance, irregular morphology, and complex backgrounds associated with ulcer regions in clinical photographs. Traditional convolutional neural networks (CNNs), such as U-Net, provide strong localization capabilities but struggle to model long-range spatial dependencies due to their inherently limited receptive fields. To address this, we employ the TransUNet architecture, a hybrid framework that integrates the global attention mechanism of Vision Transformers (ViTs) into the U-Net structure. This combination allows the model to extract global contextual features while maintaining fine-grained spatial resolution. We trained the model on the public Foot Ulcer Segmentation Challenge (FUSeg) dataset using a robust augmentation pipeline and a hybrid loss function to mitigate class imbalance. On the validation set, the model achieved a Dice Similarity Coefficient (F1-score) of 0.8799 using an optimized threshold of 0.4389. To ensure clinical transparency, we integrated Grad-CAM visualizations to highlight model focus areas. Furthermore, a clinical utility analysis demonstrated a strong correlation (Pearson r = 0.9631) between predicted and ground-truth wound areas. These outcomes demonstrate that our approach effectively integrates global and local feature extraction, offering a reliable, effective, and explainable solution for automated foot ulcer assessment.

cs / eess.IV / cs.CV