iconLogo
Published:2025/12/3 14:35:56

タイトル & 超要約:UAV×5G、MADRLで通信爆速化!

✨ ギャル的キラキラポイント ✨ ● UAV(無人飛行機)が基地局(きちきょく)になるって、未来🚀! ● MADRL(マルチエージェント強化学習)で、通信が賢く進化✨ ● QoS(サービスの質)もエネルギー効率も、両方叶えちゃうなんて最強💖

詳細解説 • 背景 5G時代の通信需要(じゅよう)は激増中🔥 地上基地局だけじゃカバーしきれない場所も!そこでUAV(ドローンみたいなやつ)が活躍✨ でも、効率よく動かすのが難しい…

• 方法 MADRLを使って、UAVの位置決め、資源(リソース)割り当て、QoS、省エネを全部まとめて最適化🚀 いろんなアルゴリズムを試して、一番良い方法を見つけたんだって!

• 結果 MADRLのおかげで、通信は速くなるし、エネルギー消費も抑えられるし、サービスの質も上がる⤴️ 特にMAPPOってのが、一番優秀だったみたい💖

続きは「らくらく論文」アプリで

Multi-Agent Deep Reinforcement Learning for UAV-Assisted 5G Network Slicing: A Comparative Study of MAPPO, MADDPG, and MADQN

Ghoshana Bista / Abbas Bradai / Emmanuel Moulay / Abdulhalim Dandoush

The growing demand for robust, scalable wireless networks in the 5G-and-beyond era has led to the deployment of Unmanned Aerial Vehicles (UAVs) as mobile base stations to enhance coverage in dense urban and underserved rural areas. This paper presents a Multi-Agent Deep Reinforcement Learning (MADRL) framework that integrates Proximal Policy Optimization (MAPPO), Multi-Agent Deep Deterministic Policy Gradient (MADDPG), and Multi-Agent Deep Q-Networks (MADQN) to jointly optimize UAV positioning, resource allocation, Quality of Service (QoS), and energy efficiency through 5G network slicing. The framework adopts Centralized Training with Decentralized Execution (CTDE), enabling autonomous real-time decision-making while preserving global coordination. Users are prioritized into Premium (A), Silver (B), and Bronze (C) slices with distinct QoS requirements. Experiments in realistic urban and rural scenarios show that MAPPO achieves the best overall QoS-energy tradeoff, especially in interference-rich environments; MADDPG offers more precise continuous control and can attain slightly higher SINR in open rural settings at the cost of increased energy usage; and MADQN provides a computationally efficient baseline for discretized action spaces. These findings demonstrate that no single MARL algorithm is universally dominant; instead, algorithm suitability depends on environmental topology, user density, and service requirements. The proposed framework highlights the potential of MARL-driven UAV systems to enhance scalability, reliability, and differentiated QoS delivery in next-generation wireless networks.

cs / eess.SY / cs.SY