iconLogo
Published:2025/8/22 20:29:27

1億件データセットでTQA爆上がり!✨

超要約: 時間に関する質問に答えるAIを最強にするデータセット開発!🚀

ギャル的キラキラポイント✨

● 1億件超えの質問と答えのセット! 桁違いのデータ量でAIの賢さレベルが爆上がり!💖 ● 質問の種類が超豊富! 属性、比較、数字… いろんな質問に対応できる万能AIを目指す!✨ ● 時間の概念を理解するAIを作る! 未来予測とか、ビジネスで超役立ちそうじゃん?😎

詳細解説

続きは「らくらく論文」アプリで

ComplexTempQA:A 100m Dataset for Complex Temporal Question Answering

Raphael Gruber / Abdelrahman Abdallah / Michael F\"arber / Adam Jatowt

We introduce \textsc{ComplexTempQA},\footnote{Dataset and code available at: https://github.com/DataScienceUIBK/ComplexTempQA} a large-scale dataset consisting of over 100 million question-answer pairs designed to tackle the challenges in temporal question answering. \textsc{ComplexTempQA} significantly surpasses existing benchmarks in scale and scope. Utilizing Wikipedia and Wikidata, the dataset covers questions spanning over two decades and offers an unmatched scale. We introduce a new taxonomy that categorizes questions as \textit{attributes}, \textit{comparisons}, and \textit{counting} questions, revolving around events, entities, and time periods, respectively. A standout feature of \textsc{ComplexTempQA} is the high complexity of its questions, which demand reasoning capabilities for answering such as across-time comparison, temporal aggregation, and multi-hop reasoning involving temporal event ordering and entity recognition. Additionally, each question is accompanied by detailed metadata, including specific time scopes, allowing for comprehensive evaluation of temporal reasoning abilities of large language models.

cs / cs.CL