iconLogo
Published:2025/11/7 18:45:26

FedFACTって何よ!? 連合学習のフェアリーフレームワーク✨

超要約: FLの不公平さバイバイ!公平性と精度を両立する新技術!

ギャル的キラキラポイント✨ ● グローバルとローカル、両方の公平性(フェアネス)を叶えちゃうとこ💖 ● 精度を落とさずに、公平性のバランスを調整できるとこがスゴくない?😍 ● IT企業の信頼度爆上がり!差別バイアスともおさらばできるとこ最強🫶

詳細解説 背景 AIって便利だけど、データに偏りがあると不公平な結果を出しちゃうコトも😭。連合学習(FL)っていう、データをバラバラにしたままAIを学習させる方法でも、公平性の問題は残ってたの。

方法 そこで登場!FedFACT っていう新しいフレームワーク💡。グローバル(全体)とローカル(個々)の公平性を両立させるように工夫されてるんだって!

続きは「らくらく論文」アプリで

FedFACT: A Provable Framework for Controllable Group-Fairness Calibration in Federated Learning

Li Zhang / Zhongxuan Han / Xiaohua Feng / Jiaming Zhang / Yuyuan Li / Chaochao Chen

With the emerging application of Federated Learning (FL) in decision-making scenarios, it is imperative to regulate model fairness to prevent disparities across sensitive groups (e.g., female, male). Current research predominantly focuses on two concepts of group fairness within FL: Global Fairness (overall model disparity across all clients) and Local Fairness (the disparity within each client). However, the non-decomposable, non-differentiable nature of fairness criteria poses two fundamental, unresolved challenges for fair FL: (i) Harmonizing global and local fairness, especially in multi-class setting; (ii) Enabling a controllable, optimal accuracy-fairness trade-off. To tackle these challenges, we propose a novel controllable federated group-fairness calibration framework, named FedFACT. FedFACT identifies the Bayes-optimal classifiers under both global and local fairness constraints, yielding models with minimal performance decline while guaranteeing fairness. Building on the characterization of the optimal fair classifiers, we reformulate fair federated learning as a personalized cost-sensitive learning problem for in-processing and a bi-level optimization for post-processing. Theoretically, we provide convergence and generalization guarantees for FedFACT to approach the near-optimal accuracy under given fairness levels. Extensive experiments on multiple datasets across various data heterogeneity demonstrate that FedFACT consistently outperforms baselines in balancing accuracy and global-local fairness.

cs / cs.LG