COSMO-BenchでC-SLAM爆上げ🚀
タイトル & 超要約 COSMO-Bench:C-SLAMの性能評価を爆上げするベンチマークだよ!
ギャル的キラキラポイント✨ ● 現実世界のデータ(LiDAR)で、マジリアルな評価ができる! ● 協調型SLAM(C-SLAM)に特化してるから、細かいとこまで見れる👀 ● いろんな環境のデータがあるから、どんな時でも使えるってこと!
詳細解説
リアルでの使いみちアイデア💡
続きは「らくらく論文」アプリで
Recent years have seen a focus on research into distributed optimization algorithms for multi-robot Collaborative Simultaneous Localization and Mapping (C-SLAM). Research in this domain, however, is made difficult by a lack of standard benchmark datasets. Such datasets have been used to great effect in the field of single-robot SLAM, and researchers focused on multi-robot problems would benefit greatly from dedicated benchmark datasets. To address this gap, we design and release the Collaborative Open-Source Multi-robot Optimization Benchmark (COSMO-Bench) -- a suite of 24 datasets derived from a state-of-the-art C-SLAM front-end and real-world LiDAR data. Data DOI: https://doi.org/10.1184/R1/29652158