iconLogo
Published:2025/10/23 8:33:24

タイトル:最強MAベンチマーク爆誕!安全神話へ💖 超要約:スマホAIのセキュリティを最強にするベンチマーク開発!

● スマホAIの弱点、見つけちゃった!📱💥 ● いろんな攻撃を試して、実力チェック!💪 ● 未来のスマホAIは、もっと安全になるね!✨

詳細解説いくよ~!

背景:最近のAI(人工知能)は、スマホの画面操作を勝手にやってくれる「モバイルエージェント(MA)」ってやつがスゴいの! でも、通知とかポップアップとか、色んなものが邪魔して、MAが変なことしちゃう可能性もあるんだよね😱 これって、まるでゲームの裏技みたいな「環境注入攻撃」ってやつで、MAを騙して悪いことさせちゃうんだって!

方法:この研究では、その「環境注入攻撃」に対するMAの強さを試す、新しいベンチマーク「GhostEI-Bench」を作ったんだって! Androidのエミュレーター(スマホの真似っこ)を使って、MAに色んな攻撃を仕掛けて、ちゃんと動けるかテストしたんだって! 通知とかポップアップとか、色んな邪魔が入る状況で、MAがどれだけ賢く動けるかを評価したみたい🤔

続きは「らくらく論文」アプリで

GhostEI-Bench: Do Mobile Agents Resilience to Environmental Injection in Dynamic On-Device Environments?

Chiyu Chen / Xinhao Song / Yunkai Chai / Yang Yao / Haodong Zhao / Lijun Li / Jie Li / Yan Teng / Gongshen Liu / Yingchun Wang

Vision-Language Models (VLMs) are increasingly deployed as autonomous agents to navigate mobile graphical user interfaces (GUIs). Operating in dynamic on-device ecosystems, which include notifications, pop-ups, and inter-app interactions, exposes them to a unique and underexplored threat vector: environmental injection. Unlike prompt-based attacks that manipulate textual instructions, environmental injection corrupts an agent's visual perception by inserting adversarial UI elements (for example, deceptive overlays or spoofed notifications) directly into the GUI. This bypasses textual safeguards and can derail execution, causing privacy leakage, financial loss, or irreversible device compromise. To systematically evaluate this threat, we introduce GhostEI-Bench, the first benchmark for assessing mobile agents under environmental injection attacks within dynamic, executable environments. Moving beyond static image-based assessments, GhostEI-Bench injects adversarial events into realistic application workflows inside fully operational Android emulators and evaluates performance across critical risk scenarios. We further propose a judge-LLM protocol that conducts fine-grained failure analysis by reviewing the agent's action trajectory alongside the corresponding screenshot sequence, pinpointing failure in perception, recognition, or reasoning. Comprehensive experiments on state-of-the-art agents reveal pronounced vulnerability to deceptive environmental cues: current models systematically fail to perceive and reason about manipulated UIs. GhostEI-Bench provides a framework for quantifying and mitigating this emerging threat, paving the way toward more robust and secure embodied agents.

cs / cs.CR / cs.AI