超要約:センサーで材料を分ける機械🤖の性能を、賢く調整する技術の話✨
🌟 ギャル的キラキラポイント✨ ● 実験回数を減らして、最適な設定を探せるのがエモい!🤩 ● 選別結果の「アヤシイ度」(不確実性)も考慮できる賢さ!🧐 ● 製造業とかリサイクル業が、もっとハッピーになれるかも♪ 🥰
詳細解説いくよ~!
背景 材料をセンサーで選別するシステム(SBS)ってあるじゃん?🤖 例えば、ゴミの中からリサイクルできるものを探したりするやつ! でも、その性能は設定次第で大きく変わるんだよね💦 どんな材料を、どんなスピードで、どれくらい正確に…みたいな。
続きは「らくらく論文」アプリで
Sensor-based sorting systems enable the physical separation of a material stream into two fractions. The sorting decision is based on the image data evaluation of the sensors used and is carried out using actuators. Various process parameters must be set depending on the properties of the material stream, the dimensioning of the system, and the required sorting accuracy. However, continuous verification and re-adjustment are necessary due to changing requirements and material stream compositions. In this paper, we introduce an approach for optimizing, recurrently monitoring and adjusting the process parameters of a sensor-based sorting system. Based on Bayesian Optimization, Gaussian process regression models are used as surrogate models to achieve specific requirements for system behavior with the uncertainties contained therein. This method minimizes the number of necessary experiments while simultaneously considering two possible optimization targets based on the requirements for both material output streams. In addition, uncertainties are considered during determining sorting accuracies in the model calculation. We evaluated the method with three example process parameters.