超要約: 肺がんの画像から再発リスクをピタリと当てるAI、CellEcoNet!
🌟 ギャル的キラキラポイント✨
● 細胞を言葉、組織を文章に見立てる斬新(ざんしん)な発想がイケてる✨ ● 深層学習(ディープラーニング)で、見逃しがちな情報もキャッチ👀 ● 患者さんに合った治療ができるようになるかも! 未来が明るいね🤩
詳細解説いくよー!
続きは「らくらく論文」アプリで
Despite surgical resection, ~70% of invasive lung adenocarcinoma (ILA) patients recur within five years, and current tools fail to identify those needing adjuvant therapy. To address this unmet clinical need, we introduce CellEcoNet, a novel spatially aware deep learning framework that models whole slide images (WSIs) through natural language analogy, defining a "language of pathology," where cells act as words, cellular neighborhoods become phrases, and tissue architecture forms sentences. CellEcoNet learns these context-dependent meanings automatically, capturing how subtle variations and spatial interactions derive recurrence risk. On a dataset of 456 H&E-stained WSIs, CellEcoNet achieved superior predictive performance (AUC:77.8% HR:9.54), outperforming IASLC grading system (AUC:71.4% HR:2.36), AJCC Stage (AUC:64.0% HR:1.17) and state-of-the-art computational methods (AUCs:62.2-67.4%). CellEcoNet demonstrated fairness and consistent performance across diverse demographic and clinical subgroups. Beyond prognosis, CellEcoNet marks a paradigm shift by decoding the tumor microenvironment's cellular "language" to reveal how subtle cell variations encode recurrence risk.