タイトル & 超要約:Mambaで多言語ASR爆誕!🚀
ギャル的キラキラポイント✨ ● Mambaっていう新しいモデルを使うから、Transformerよりスゴイらしい! ● 色んな国の言葉を、1つのモデルで認識できちゃうんだって! ● 低コストで、爆速で多言語対応できちゃうかもって話💖
詳細解説
リアルでの使いみちアイデア💡
もっと深掘りしたい子へ🔍
続きは「らくらく論文」アプリで
Multilingual automatic speech recognition (ASR) remains a challenging task, especially when balancing performance across high- and low-resource languages. Recent advances in sequence modeling suggest that architectures beyond Transformers may offer better scalability and efficiency. In this work, we introduce MLMA (Multilingual Language Modeling with Mamba for ASR), a new approach that leverages the Mamba architecture -- an efficient state-space model optimized for long-context sequence processing -- for multilingual ASR. Using Mamba, MLMA implicitly incorporates language-aware conditioning and shared representations to support robust recognition across diverse languages. Experiments on standard multilingual benchmarks show that MLMA achieves competitive performance compared to Transformer-based architectures. These results highlight Mamba's potential as a strong backbone for scalable, efficient, and accurate multilingual speech recognition.