iconLogo
Published:2025/12/3 17:03:39

最強ギャルも納得!決定木の最強学習法、爆誕☆

決定木(けっていぎ)の学習を爆速(ばくはや)にする方法、見つけちゃった!

✨ ギャル的キラキラポイント ✨

● 決定木を SAT(充足可能性問題)っていう数式で表す発想が天才的💎✨ ● ApproxMC(近似モデルカウント)を使って、賢く質問を選んでるのがスゴすぎ💖 ● ブラックボックス(中身が見えないやつ)のシステムを攻略(こうりゃく)できるのが、激アツ🔥

詳細解説 ● 背景 ITの世界では、AIとか色んなシステムがブラックボックス化してるじゃん?🤖 中身が見えないから、どう動いてるか分かんない!困るよね〜💦 そこで、少ない質問で、そのシステムの動きを解き明かす「能動学習」ってのが重要になってくるんだよね!

続きは「らくらく論文」アプリで

Approximate Optimal Active Learning of Decision Trees

Zunchen Huang / Chenglu Jin

We consider the problem of actively learning an unknown binary decision tree using only membership queries, a setting in which the learner must reason about a large hypothesis space while maintaining formal guarantees. Rather than enumerating candidate trees or relying on heuristic impurity or entropy measures, we encode the entire space of bounded-depth decision trees symbolically in SAT formulas. We propose a symbolic method for active learning of decision trees, in which approximate model counting is used to estimate the reduction of the hypothesis space caused by each potential query, enabling near-optimal query selection without full model enumeration. The resulting learner incrementally strengthens a CNF representation based on observed query outcomes, and approximate model counter ApproxMC is invoked to quantify the remaining version space in a sound and scalable manner. Additionally, when ApproxMC stagnates, a functional equivalence check is performed to verify that all remaining hypotheses are functionally identical. Experiments on decision trees show that the method reliably converges to the correct model using only a handful of queries, while retaining a rigorous SAT-based foundation suitable for formal analysis and verification.

cs / cs.LO / cs.SE