iconLogo
Published:2025/10/23 7:24:59

タイトル & 超要約:マルチラベル木、解析で未来を拓く!✨

● ギャル的キラキラポイント✨ ● マルチラベル木(マル木♡)をラベリング(名前付け)する技術だよ! ● 複雑な進化(進化ってエモい!)を解析できるんだって! ● AI創薬とか、未来が楽しみすぎ💖

詳細解説いくよ~!

背景: 生物の進化を調べるとき、木🌲みたいな構造(系統樹)を使うんだけど、最近はもっと複雑な構造(系統ネットワーク)も必要になってきたんだって! だから、同じラベルを持つ葉っぱもある「マル木」をちゃんと解析する方法が求められてるってワケ😉

方法: マル木にラベルを付ける「ラベリングアルゴリズム」を開発したんだって!葉っぱだけじゃなく、中のノードにもラベルを付けることで、マル木の構造を全部表現できるようにしたんだね✨ あと、「マルチセット分割」っていう数学的な考え方とも関係があることが分かったみたい!

続きは「らくらく論文」アプリで

Labeling and folding multi-labeled trees

Vincent Moulton / Andreas Spillner

In 1989 Erd\H{o}s and Sz\'ekely showed that there is a bijection between (i) the set of rooted trees with $n+1$ vertices whose leaves are bijectively labeled with the elements of $[\ell]=\{1,2,\dots,\ell\}$ for some $\ell \leq n$, and (ii) the set of partitions of $[n]=\{1,2,\dots,n\}$. They established this via a labeling algorithm based on the anti-lexicographic ordering of non-empty subsets of $[n]$ which extends the labeling of the leaves of a given tree to a labeling of all of the vertices of that tree. In this paper, we generalize their approach by developing a labeling algorithm for multi-labeled trees, that is, rooted trees whose leaves are labeled by positive integers but in which distinct leaves may have the same label. In particular, we show that certain orderings of the set of all finite, non-empty multisets of positive integers can be used to characterize partitions of a multiset that arise from labelings of multi-labeled trees. As an application, we show that the recently introduced class of labelable phylogenetic networks is precisely the class of phylogenetic networks that are stable relative to the so-called folding process on multi-labeled trees. We also give a bijection between the labelable phylogenetic networks with leaf-set $[n]$ and certain partitions of multisets.

cs / cs.DM / math.CO