● 大規模グラフ(めちゃデカいグラフ)も爆速で分析できるって、最強じゃん?😎 ● ごちゃごちゃしてた結果を、わかりやすくまとめるから、すぐ理解できるの!🌟 ● 色んな分野で使えるから、将来性もバッチリ👍
● 背景 グラフ分析って、色んな情報が線で繋がってるデータ(人間関係とか、SNSの繋がりとか)を調べることね!最大クリークっていうのは、グラフの中で「みんな仲良しグループ」を見つけることなんだけど…これが難しいの🥺 今までのやり方だと、時間かかったり、情報が多すぎたりして大変だったんだよね💦
● 方法 新しい方法「p-dense aggregators」を使えば、最大クリークを効率よく見つけられるんだって!✨ 難しい計算とかは、専門家にお任せ!😜 簡単に言うと、グラフを良い感じにまとめて、本当に重要なグループだけを抽出するイメージかな?🧐
続きは「らくらく論文」アプリで
Maximal clique enumeration is a fundamental graph mining task, but its utility is often limited by computational intractability and highly redundant output. To address these challenges, we introduce \emph{$\rho$-dense aggregators}, a novel approach that succinctly captures maximal clique structure. Instead of listing all cliques, we identify a small collection of clusters with edge density at least $\rho$ that collectively contain every maximal clique. In contrast to maximal clique enumeration, we prove that for all $\rho < 1$, every graph admits a $\rho$-dense aggregator of \emph{sub-exponential} size, $n^{O(\log_{1/\rho}n)}$, and provide an algorithm achieving this bound. For graphs with bounded degeneracy, a typical characteristic of real-world networks, our algorithm runs in near-linear time and produces near-linear size aggregators. We also establish a matching lower bound on aggregator size, proving our results are essentially tight. In an empirical evaluation on real-world networks, we demonstrate significant practical benefits for the use of aggregators: our algorithm is consistently faster than the state-of-the-art clique enumeration algorithm, with median speedups over $6\times$ for $\rho=0.1$ (and over $300\times$ in an extreme case), while delivering a much more concise structural summary.