iconLogo
Published:2025/12/3 12:33:35

タイトル & 超要約:宇宙ロボット、Sim2Realを突破🚀✨ 宇宙で自律(じりつ)するロボ、スゴくない?


ギャル的キラキラポイント✨

● シミュレーション(仮想空間での実験)と現実のギャップを、強化学習(RL)で埋めたってこと!すごすぎ!👏 ● 宇宙ステーション(ISS)でロボットが自律(じりつ)行動! まじ、未来じゃん?🤖 ● 宇宙インフラ(宇宙基地とか)でのサービスに繋がるかも! ビジネスチャンス爆誕☆💰


続きは「らくらく論文」アプリで

Crossing the Sim2Real Gap Between Simulation and Ground Testing to Space Deployment of Autonomous Free-flyer Control

Kenneth Stewart / Samantha Chapin / Roxana Leontie / Carl Glen Henshaw

Reinforcement learning (RL) offers transformative potential for robotic control in space. We present the first on-orbit demonstration of RL-based autonomous control of a free-flying robot, the NASA Astrobee, aboard the International Space Station (ISS). Using NVIDIA's Omniverse physics simulator and curriculum learning, we trained a deep neural network to replace Astrobee's standard attitude and translation control, enabling it to navigate in microgravity. Our results validate a novel training pipeline that bridges the simulation-to-reality (Sim2Real) gap, utilizing a GPU-accelerated, scientific-grade simulation environment for efficient Monte Carlo RL training. This successful deployment demonstrates the feasibility of training RL policies terrestrially and transferring them to space-based applications. This paves the way for future work in In-Space Servicing, Assembly, and Manufacturing (ISAM), enabling rapid on-orbit adaptation to dynamic mission requirements.

cs / cs.RO / cs.LG / cs.SY / eess.SY