タイトル & 超要約:ゼロショ動画編集、FRESCOで時間軸もバッチリ👌
● 動画編集の"時間軸のズレ"問題を、AIで解決するよ! ● フレーム間の整合性を高める技術「FRESCO」がスゴい✨ ● テキストから動画編集、色んな表現が簡単にできちゃう!
詳細解説いくねー!🎤
背景
動画編集って大変じゃん?😱 特に、フレーム(動画のコマ)間のズレとか、違和感が出ちゃうことってあるよね? それを解決するために、AIを使って動画を編集する研究が進んでるんだけど、まだ完璧じゃなかったんだよね~。
続きは「らくらく論文」アプリで
The remarkable success in text-to-image diffusion models has motivated extensive investigation of their potential for video applications. Zero-shot techniques aim to adapt image diffusion models for videos without requiring further model training. Recent methods largely emphasize integrating inter-frame correspondence into attention mechanisms. However, the soft constraint applied to identify the valid features to attend is insufficient, which could lead to temporal inconsistency. In this paper, we present FRESCO, which integrates intra-frame correspondence with inter-frame correspondence to formulate a more robust spatial-temporal constraint. This enhancement ensures a consistent transformation of semantically similar content between frames. Our method goes beyond attention guidance to explicitly optimize features, achieving high spatial-temporal consistency with the input video, significantly enhancing the visual coherence of manipulated videos. We verify FRESCO adaptations on two zero-shot tasks of video-to-video translation and text-guided video editing. Comprehensive experiments demonstrate the effectiveness of our framework in generating high-quality, coherent videos, highlighting a significant advance over current zero-shot methods.