超要約: チベット語LLMを2段階で育成!翻訳とかめっちゃ得意になるんだって✨
✨ ギャル的キラキラポイント ✨
● チベット語(ちょいマニアック言語)でも、LLMを使いこなせるようにする研究なの! ● CPTとSFTの2段構えで、低リソース言語の壁をブチ破る作戦!賢すぎ! ● 翻訳精度爆上がりで、ビジネスチャンスも広がる予感💖
詳細解説いくよ~!
続きは「らくらく論文」アプリで
Adapting large language models (LLMs) to low-resource languages remains a major challenge due to data scarcity and cross-lingual drift. This work presents a two-stage adaptation of Qwen2.5-3B to Tibetan, a morphologically rich and underrepresented language. We employ Continual Pretraining (CPT) to establish Tibetan linguistic grounding, followed by Supervised Fine-Tuning (SFT) for task and translation specialization. Empirical evaluations demonstrate a consistent decrease in perplexity (from 2.98 $\rightarrow$ 1.54) and substantial improvements in Chinese$\rightarrow$Tibetan translation quality (BLEU: 0.046 $\rightarrow$ 0.261; chrF: 2.2 $\rightarrow$ 6.6). Layer-wise analysis across 435 layers in Qwen3-4B reveals that adaptation primarily concentrates on embedding and output heads, with mid--late MLP projections encoding domain-specific transformations. Our findings suggest that CPT constructs a Tibetan semantic manifold while SFT sharpens task alignment with minimal representational disruption. This study provides the first quantitative exploration of Tibetan adaptation dynamics for LLMs, and offers an open, reproducible framework for extending multilingual foundation models to low-resource settings.