● 文字の形が複雑でも大丈夫!低ランク近似(LRA)で、どんなフォントにも対応しちゃう! ● 処理速度が爆上がり!トリプルアサインメント検出ヘッドで、爆速キャッチ&認識!🚀 ● AIが賢くなった!Transformer使って、画像全体を理解して正確に文字を読み取るよ!📖
● 背景 画像から文字を読み取る技術(シーンテキストスポッティング)って、色んな場面で役立つじゃん? 例えば、看板とか、書類とか。でも、精度と速さの両立が難しかったんだよね~。
● 方法 低ランク近似(LRA)ってテクニックを使って、文字の形をめっちゃ効率的に表現できるようにしたんだ! あと、トリプルアサインメント検出ヘッドっていうので、処理を速くしたんだって。賢いAI(Transformer)も使ってるから、精度もバッチリ!
● 結果 このLRANet++、文字の検出と認識の精度がめっちゃ上がったみたい! しかも、処理速度も速くなったから、リアルタイムで使えるレベル!✨
続きは「らくらく論文」アプリで
End-to-end text spotting aims to jointly optimize text detection and recognition within a unified framework. Despite significant progress, designing an accurate and efficient end-to-end text spotter for arbitrary-shaped text remains largely unsolved. We identify the primary bottleneck as the lack of a reliable and efficient text detection method. To address this, we propose a novel parameterized text shape method based on low-rank approximation for precise detection and a triple assignment detection head to enable fast inference. Specifically, unlike other shape representation methods that employ data-irrelevant parameterization, our data-driven approach derives a low-rank subspace directly from labeled text boundaries. To ensure this process is robust against the inherent annotation noise in this data, we utilize a specialized recovery method based on an $\ell_1$-norm formulation, which accurately reconstructs the text shape with only a few key orthogonal vectors. By exploiting the inherent shape correlation among different text contours, our method achieves consistency and compactness in shape representation. Next, the triple assignment scheme introduces a novel architecture where a deep sparse branch (for stabilized training) is used to guide the learning of an ultra-lightweight sparse branch (for accelerated inference), while a dense branch provides rich parallel supervision. Building upon these advancements, we integrate the enhanced detection module with a lightweight recognition branch to form an end-to-end text spotting framework, termed LRANet++, capable of accurately and efficiently spotting arbitrary-shaped text. Extensive experiments on several challenging benchmarks demonstrate the superiority of LRANet++ compared to state-of-the-art methods. Code will be available at: https://github.com/ychensu/LRANet-PP.git