iconLogo
Published:2025/11/7 21:18:42

ペルシャ音楽をAIが理解?!楽器分類の精度爆上げだよ☆(超要約:音楽AI、ペルシャ音楽で進化✨)

ギャル的キラキラポイント✨

● ペルシャ音楽🎸の楽器分類、データ不足をポリフォニック(多重音)データ生成で解決しちゃった! ● 新しいデータセット公開!MERTモデルで既存手法より精度UP⤴️ ● AIがペルシャ音楽を理解?!音楽ストリーミングとかAI作曲に役立つかも🎵

詳細解説

● 背景 音楽情報検索(MIR)の研究で、楽器分類って超重要🎤。でも、西洋音楽に比べて、ペルシャ音楽みたいな非西洋音楽はデータが少ないのが悩みだったんだよね😭。

続きは「らくらく論文」アプリで

Persian Musical Instruments Classification Using Polyphonic Data Augmentation

Diba Hadi Esfangereh / Mohammad Hossein Sameti / Sepehr Harfi Moridani / Leili Javidpour / Mahdieh Soleymani Baghshah

Musical instrument classification is essential for music information retrieval (MIR) and generative music systems. However, research on non-Western traditions, particularly Persian music, remains limited. We address this gap by introducing a new dataset of isolated recordings covering seven traditional Persian instruments, two common but originally non-Persian instruments (i.e., violin, piano), and vocals. We propose a culturally informed data augmentation strategy that generates realistic polyphonic mixtures from monophonic samples. Using the MERT model (Music undERstanding with large-scale self-supervised Training) with a classification head, we evaluate our approach with out-of-distribution data which was obtained by manually labeling segments of traditional songs. On real-world polyphonic Persian music, the proposed method yielded the best ROC-AUC (0.795), highlighting complementary benefits of tonal and temporal coherence. These results demonstrate the effectiveness of culturally grounded augmentation for robust Persian instrument recognition and provide a foundation for culturally inclusive MIR and diverse music generation systems.

cs / cs.SD / cs.CL