RoCoでCOPs(組み合わせ最適化問題)を解決!LLMエージェントがチーム組んで最強ヒューリスティック爆誕☆
✨ ギャル的キラキラポイント ✨ ● 複数エージェントで協調プレイ! 役割分担して、色んな角度から問題にアプローチするの、まさにギャルチームみたいじゃん?👯♀️ ● 既存手法よりスゴイ! ReEvoとかHSEvoより良いって、最強の証明だよね!😎 ● IT業界の救世主! 複雑な問題も、RoCoならスマートに解決!まさにIT界のカリスマ誕生って感じ💖
詳細解説いくよ~!
背景 AHD(自動ヒューリスティック設計)っていう、専門家いなくても自動でヒューリスティック(問題解決のコツみたいなもの)作っちゃうスゴ技があるんだけど、RoCoはLLM(大規模言語モデル)を使って、それをさらに進化させようって試みだよ!✨ 今までのLLMを使ったAHDは、ちょっと単体プレーヤーだったから、複数人でチーム組ませたらもっと良くね?って発想ね!
続きは「らくらく論文」アプリで
Automatic Heuristic Design (AHD) has gained traction as a promising solution for solving combinatorial optimization problems (COPs). Large Language Models (LLMs) have emerged and become a promising approach to achieving AHD, but current LLM-based AHD research often only considers a single role. This paper proposes RoCo, a novel Multi-Agent Role-Based System, to enhance the diversity and quality of AHD through multi-role collaboration. RoCo coordinates four specialized LLM-guided agents-explorer, exploiter, critic, and integrator-to collaboratively generate high-quality heuristics. The explorer promotes long-term potential through creative, diversity-driven thinking, while the exploiter focuses on short-term improvements via conservative, efficiency-oriented refinements. The critic evaluates the effectiveness of each evolution step and provides targeted feedback and reflection. The integrator synthesizes proposals from the explorer and exploiter, balancing innovation and exploitation to drive overall progress. These agents interact in a structured multi-round process involving feedback, refinement, and elite mutations guided by both short-term and accumulated long-term reflections. We evaluate RoCo on five different COPs under both white-box and black-box settings. Experimental results demonstrate that RoCo achieves superior performance, consistently generating competitive heuristics that outperform existing methods including ReEvo and HSEvo, both in white-box and black-box scenarios. This role-based collaborative paradigm establishes a new standard for robust and high-performing AHD.