超要約: SNSの書き込みからメンタル疾患を特定するAIモデル!早期発見に役立つかも💕
● SNSのテキストで、メンタルヘルス(心の健康)の状態をAIが見抜くんだって!😳 ● 色んな精神疾患を同時に見分けられる、マルチタスクなモデルなの!✨ ● 「なんでそう判断したか」が分かるから、信頼度も爆上がり!💖
背景 SNSで心の悩みを打ち明ける人、多いよね😢。でも、見過ごされがちだし、専門家も足りない…。そこで、AIで早期発見できないか?って研究だよ!「multiMentalRoBERTa」は、そんな悩みを解決するために生まれたんだって!
方法 Reddit(レディット)とかSMSのデータを使って、RoBERTa(ロバータ)っていうAIモデルをカスタマイズしたんだって!色んな精神疾患の情報を学習させて、高精度(すごい正確さ!)で分類できるようにしたんだね!✨
続きは「らくらく論文」アプリで
The early detection of mental health disorders from social media text is critical for enabling timely support, risk assessment, and referral to appropriate resources. This work introduces multiMentalRoBERTa, a fine-tuned RoBERTa model designed for multiclass classification of common mental health conditions, including stress, anxiety, depression, post-traumatic stress disorder (PTSD), suicidal ideation, and neutral discourse. Drawing on multiple curated datasets, data exploration is conducted to analyze class overlaps, revealing strong correlations between depression and suicidal ideation as well as anxiety and PTSD, while stress emerges as a broad, overlapping category. Comparative experiments with traditional machine learning methods, domain-specific transformers, and prompting-based large language models demonstrate that multiMentalRoBERTa achieves superior performance, with macro F1-scores of 0.839 in the six-class setup and 0.870 in the five-class setup (excluding stress), outperforming both fine-tuned MentalBERT and baseline classifiers. Beyond predictive accuracy, explainability methods, including Layer Integrated Gradients and KeyBERT, are applied to identify lexical cues that drive classification, with a particular focus on distinguishing depression from suicidal ideation. The findings emphasize the effectiveness of fine-tuned transformers for reliable and interpretable detection in sensitive contexts, while also underscoring the importance of fairness, bias mitigation, and human-in-the-loop safety protocols. Overall, multiMentalRoBERTa is presented as a lightweight, robust, and deployable solution for enhancing support in mental health platforms.