iconLogo
Published:2025/12/3 14:48:26

HRSG制御で火力発電をスマートに✨

超要約: HRSG(熱回収装置)の温度をAIで制御して、発電効率UP!IT企業も参入できるよ☆

🌟 ギャル的キラキラポイント ● アクチュエータ(スプレーバルブ)の故障をAIで予知👀 ● 物理法則(熱力学とか!)も考慮して、賢く制御するの💖 ● 電力会社のエネルギーコスト削減にも貢献できるって、すごくない?😘

詳細解説いくよ~!

背景 火力発電所🏭で、排熱(はいねつ)を利用するHRSG(熱回収蒸気発生器)って設備があるんだけど、コイツの温度制御が難しいのよね💦特に、スプレーバルブが壊れると、発電効率がガタ落ちしちゃう😱

続きは「らくらく論文」アプリで

Fault-Tolerant Control of Steam Temperature in HRSG Superheater under Actuator Fault Using a Sliding Mode Observer and PINN

Mojtaba Fanoodi / Farzaneh Abdollahi / Mahdi Aliyari Shoorehdeli

This paper presents a novel fault-tolerant control framework for steam temperature regulation in Heat Recovery Steam Generators (HRSGs) subject to actuator faults. Addressing the critical challenge of valve degradation in superheater spray attemperators, we propose a synergistic architecture comprising three components: (1) a Sliding Mode Observer (SMO) for estimation of unmeasured thermal states, (2) a Physics-Informed Neural Network (PINN) for estimating multiplicative actuator faults using physical laws as constraints, and (3) a one-sided Sliding Mode Controller (SMC) that adapts to the estimated faults while minimizing excessive actuation. The key innovation lies in the framework of closed-loop physics-awareness, where the PINN continuously informs both the observer and controller about fault severity while preserving thermodynamic consistency. Rigorous uniform ultimate boundedness (UUB) is established via Lyapunov analysis under practical assumptions. Validated on real HRSG operational data, the framework demonstrates effective fault adaptation, reduced temperature overshoot, and maintains steam temperature within 1{\deg}C of the setpoint under valve effectiveness loss. This work bridges control theory and physics-guided machine learning to deliver a practically deployable solution for power plant resilience, with extensions applicable to thermal systems subject to multiplicative faults.

cs / eess.SY / cs.SY