iconLogo
Published:2025/11/8 4:27:27

バイナリコード解析でセキリティ爆上げ!CupidCall降臨✨

  1. 超要約: バイナリコードの間接呼び出しを、GNNで超正確に特定するCupidCallがスゴイ!

  2. ギャル的キラキラポイント✨

    • ● GNN(グラフニューラルネットワーク)で、バイナリコードを賢く解析💖
    • ● 精度が神レベル!セキリティ対策がめっちゃ捗るってこと😍
    • ● 新規ビジネスのチャンス到来!未来がマジ卍じゃん?🚀
  3. 詳細解説

    • 背景: バイナリコード解析は、ソースコードがないプログラムを解析する技術💻。間接呼び出し(プログラムがどこを呼び出すか、実行時まで分からないやつ)を正確に特定するのが難しい課題だったの!
    • 方法: CupidCallは、GNNを使ってバイナリコードをグラフで表現👩‍🏫。間接呼び出しのターゲットを特定するんだって!データとコードの関係性も考慮してるのがポイント💖
    • 結果: なんと!既存のモデルよりも精度が格段にUP⤴️!セキリティ対策に革命が起きる予感✨
    • 意義: ヤバくない?CupidCallを使えば、セキリティが強化されて、企業もユーザーもハッピーになれるってこと🥰
  4. リアルでの使いみちアイデア💡

    • セキリティ診断サービスで、脆弱性(弱点)をサクッと見つけられるようになるかも!
    • マルウェア(悪意のあるソフト)対策が進化して、スマホがもっと安全になるかもね📱

続きは「らくらく論文」アプリで

Resolving Indirect Calls in Binary Code via Cross-Reference Augmented Graph Neural Networks

Haotian Zhang / Kun Liu / Cristian Garces / Chenke Luo / Yu Lei / Jiang Ming

Binary code analysis is essential in scenarios where source code is unavailable, with extensive applications across various security domains. However, accurately resolving indirect call targets remains a longstanding challenge in maintaining the integrity of static analysis in binary code. This difficulty arises because the operand of a call instruction (e.g., call rax) remains unknown until runtime, resulting in an incomplete inter-procedural control flow graph (CFG). Previous approaches have struggled with low accuracy and limited scalability. To address these limitations, recent work has increasingly turned to machine learning (ML) to enhance analysis. However, this ML-driven approach faces two significant obstacles: low-quality callsite-callee training pairs and inadequate binary code representation, both of which undermine the accuracy of ML models. In this paper, we introduce CupidCall, a novel approach for resolving indirect calls using graph neural networks. Existing ML models in this area often overlook key elements such as data and code cross-references, which are essential for understanding a program's control flow. In contrast, CupidCall augments CFGs with cross-references, preserving rich semantic information. Additionally, we leverage advanced compiler-level type analysis to generate high-quality callsite-callee training pairs, enhancing model precision and reliability. We further design a graph neural model that leverages augmented CFGs and relational graph convolutions for accurate target prediction. Evaluated against real-world binaries from GitHub and the Arch User Repository on x86_64 architecture, CupidCall achieves an F1 score of 95.2%, outperforming state-of-the-art ML-based approaches. These results highlight CupidCall's effectiveness in building precise inter-procedural CFGs and its potential to advance downstream binary analysis and security applications.

cs / cs.CR