iconLogo
Published:2025/10/23 8:35:50

最強自律駐車システム爆誕!Dino-Diffusionって何?🚗💨

超要約: シミュレーションと現実の差を克服!自律駐車がめっちゃ賢くなる技術だよ☆

✨ ギャル的キラキラポイント ✨

● シミュレーション(仮想空間)で学習した技術を、現実世界でも使えるようにしたってこと!すごくなーい?🤩 ● 天気とか車の見た目とかが変わっても、ちゃんと駐車できるんだって!マジ神!✨ ● スマホでポチっとするだけで、駐車が完了する未来が来るかも!💖

詳細解説

続きは「らくらく論文」アプリで

Dino-Diffusion Modular Designs Bridge the Cross-Domain Gap in Autonomous Parking

Zixuan Wu / Hengyuan Zhang / Ting-Hsuan Chen / Yuliang Guo / David Paz / Xinyu Huang / Liu Ren

Parking is a critical pillar of driving safety. While recent end-to-end (E2E) approaches have achieved promising in-domain results, robustness under domain shifts (e.g., weather and lighting changes) remains a key challenge. Rather than relying on additional data, in this paper, we propose Dino-Diffusion Parking (DDP), a domain-agnostic autonomous parking pipeline that integrates visual foundation models with diffusion-based planning to enable generalized perception and robust motion planning under distribution shifts. We train our pipeline in CARLA at regular setting and transfer it to more adversarial settings in a zero-shot fashion. Our model consistently achieves a parking success rate above 90% across all tested out-of-distribution (OOD) scenarios, with ablation studies confirming that both the network architecture and algorithmic design significantly enhance cross-domain performance over existing baselines. Furthermore, testing in a 3D Gaussian splatting (3DGS) environment reconstructed from a real-world parking lot demonstrates promising sim-to-real transfer.

cs / cs.RO / cs.CV