✨ ギャル的キラキラポイント ✨ ● Diffusionモデル(分子構造生成AI)を、強化学習(RL)で強化!物理的に安定な分子を作れるように💖 ● RLと物理的フィードバックを組み合わせた、RLPFフレームワークを開発したんだって!👏 ● 創薬とか新素材開発が爆速になるかも!IT企業も大注目の技術だよ😎
詳細解説
背景 AIを使って分子構造を作るのは、すごいことなの!でも、今までのAIは、化学的に正しい形は作れても、物理的に不安定な分子を作っちゃうことがあったの😭
続きは「らくらく論文」アプリで
Generating physically realistic 3D molecular structures remains a core challenge in molecular generative modeling. While diffusion models equipped with equivariant neural networks have made progress in capturing molecular geometries, they often struggle to produce equilibrium structures that adhere to physical principles such as force field consistency. To bridge this gap, we propose Reinforcement Learning with Physical Feedback (RLPF), a novel framework that extends Denoising Diffusion Policy Optimization to 3D molecular generation. RLPF formulates the task as a Markov decision process and applies proximal policy optimization to fine-tune equivariant diffusion models. Crucially, RLPF introduces reward functions derived from force-field evaluations, providing direct physical feedback to guide the generation toward energetically stable and physically meaningful structures. Experiments on the QM9 and GEOM-drug datasets demonstrate that RLPF significantly improves molecular stability compared to existing methods. These results highlight the value of incorporating physics-based feedback into generative modeling. The code is available at: https://github.com/ZhijianZhou/RLPF/tree/verl_diffusion.