超要約: UAV(ドローン)が山火事をAIで速攻(ソッコウ)発見! 早期消火で被害を減らすスゴ技だよ~💖
ギャル的キラキラポイント✨
詳細解説
リアルでの使いみちアイデア💡
続きは「らくらく論文」アプリで
Unmanned Aerial Vehicles (UAVs) have become increasingly important in disaster emergency response by enabling real-time aerial video analysis. Due to the limited computational resources available on UAVs, large models cannot be run independently for real-time analysis. To overcome this challenge, we propose a lightweight and efficient two-stage framework for real-time wildfire monitoring and fire source detection on UAV platforms. Specifically, in Stage 1, we utilize a policy network to identify and discard redundant video clips using frame compression techniques, thereby reducing computational costs. In addition, we introduce a station point mechanism that leverages future frame information within the sequential policy network to improve prediction accuracy. In Stage 2, once the frame is classified as "fire", we employ the improved YOLOv8 model to localize the fire source. We evaluate the Stage 1 method using the FLAME and HMDB51 datasets, and the Stage 2 method using the Fire & Smoke dataset. Experimental results show that our method significantly reduces computational costs while maintaining classification accuracy in Stage 1, and achieves higher detection accuracy with similar inference time in Stage 2 compared to baseline methods.