iconLogo
Published:2025/8/22 20:14:29

最強ギャルが教える!TOASTでML爆速化✨

1. 超高速ML技術!モデルを自動分割して爆速にする方法だよ☆

2. ギャル的キラキラポイント✨

  • GPUとかのデバイスをフル活用! メモリ不足(データが入らない!)問題を解決するんだって!
  • 手動分割はもう古い! TOASTは自動でモデルを分割してくれるから、時間もお金も節約💖
  • AIの未来を変えるかも?! いろんな会社がもっとAIを使いやすくなるってことだよ!

3. 詳細解説

続きは「らくらく論文」アプリで

TOAST: Fast and scalable auto-partitioning based on principled static analysis

Sami Alabed / Dominik Grewe / Norman Alexander Rink / Masha Samsikova / Timur Sitdikov / Agnieszka Swietlik / Dimitrios Vytiniotis / Daniel Belov

Partitioning large machine learning models across distributed accelerator systems is a complex process, requiring a series of interdependent decisions that are further complicated by internal sharding ambiguities. Consequently, existing auto-partitioners often suffer from out-of-memory errors or are prohibitively slow when exploring the exponentially large space of possible partitionings. To mitigate this, they artificially restrict the search space, but this approach frequently yields infeasible solutions that violate device memory constraints or lead to sub-optimal performance. We propose a system that combines a novel static compiler analysis with a Monte Carlo Tree Search. Our analysis constructs an efficient decision space by identifying (i) tensor dimensions requiring identical sharding, and (ii) partitioning "conflicts" that require resolution. Our system significantly outperforms state-of-the-art industrial methods across diverse hardware platforms and model architectures, discovering previously unknown, superior solutions, and the process is fully automated even for complex and large models.

cs / cs.LG / cs.DC