超要約: データ分析をギャルっぽく進化させるCADM!クラスターごとに距離を調整して、マジで的確な分析を可能にするんだって!
✨ ギャル的キラキラポイント ✨
● 顧客(こきゃく)のコト、もっと詳しく知りたい?CADMなら、顧客データをクラスターごとに分析して、ホントに求めてるモノを見つけられるよ! ● レコメンド(おすすめ)の精度も爆上がり!あなたの好みをドンピシャで当てて、もっと楽しい体験ができるようになるかも🎵 ● IT業界の課題解決にも貢献!無駄なコストを削減して、ビジネスを加速させるスグレモノなんだよね💖
詳細解説いくよ~!
続きは「らくらく論文」アプリで
An appropriate distance metric is crucial for categorical data clustering, as the distance between categorical data cannot be directly calculated. However, the distances between attribute values usually vary in different clusters induced by their different distributions, which has not been taken into account, thus leading to unreasonable distance measurement. Therefore, we propose a cluster-customized distance metric for categorical data clustering, which can competitively update distances based on different distributions of attributes in each cluster. In addition, we extend the proposed distance metric to the mixed data that contains both numerical and categorical attributes. Experiments demonstrate the efficacy of the proposed method, i.e., achieving an average ranking of around first in fourteen datasets. The source code is available at https://anonymous.4open.science/r/CADM-47D8