iconLogo
Published:2025/10/23 7:09:21

VT-FSLでAI爆速進化!✨データ少なめでも最強モデル爆誕!

  1. 超要約: 少ないデータでイケてるAIモデル作れる新技術!😎
  2. ギャル的キラキラポイント
    • ● データ少なくてOK!コスト削減&爆速開発!💰
    • ● LLM(言語モデル)で画像とテキストを橋渡し!賢すぎ!🧠
    • ● 既存のAIより高性能!色んなサービスで活躍!🌟
  3. 詳細解説
    • 背景: AIって大量データ必要じゃん?大変じゃん? でもVT-FSLなら、少ないデータで賢く学習できるんだって!💖
    • 方法: LLM使って、画像の説明文を生成!更に、その説明文から合成画像も作っちゃう!🖼️ 幾何学的(キカガクテキ:Geometry)な方法で、もっと賢く学習するんだって!
    • 結果: いろんなテストで、既存のAIよりスゴイ結果出たみたい!😳
    • 意義: IT業界が抱える問題、全部解決!AI開発が楽になるし、新しいサービスも作れるかも!✨
  4. リアルでの使いみちアイデア💡
    • ECサイトで、商品の画像検索が超進化!🔍 少ない写真でも、ピッタリの商品見つけられる!
    • 工場で、不良品をAIが発見!✨ 少ないサンプルで、不良品を見抜いちゃう!
  5. もっと深掘りしたい子へ🔍 キーワード
    • Few-Shot Learning(フューショットラーニング)
    • Large Language Models (LLMs)
    • クロスモーダル(Crossmodal)

続きは「らくらく論文」アプリで

VT-FSL: Bridging Vision and Text with LLMs for Few-Shot Learning

Wenhao Li / Qiangchang Wang / Xianjing Meng / Zhibin Wu / Yilong Yin

Few-shot learning (FSL) aims to recognize novel concepts from only a few labeled support samples. Recent studies enhance support features by incorporating additional semantic information or designing complex semantic fusion modules. However, they still suffer from hallucinating semantics that contradict the visual evidence due to the lack of grounding in actual instances, resulting in noisy guidance and costly corrections. To address these issues, we propose a novel framework, bridging Vision and Text with LLMs for Few-Shot Learning (VT-FSL), which constructs precise cross-modal prompts conditioned on Large Language Models (LLMs) and support images, seamlessly integrating them through a geometry-aware alignment. It mainly consists of Cross-modal Iterative Prompting (CIP) and Cross-modal Geometric Alignment (CGA). Specifically, the CIP conditions an LLM on both class names and support images to generate precise class descriptions iteratively in a single structured reasoning pass. These descriptions not only enrich the semantic understanding of novel classes but also enable the zero-shot synthesis of semantically consistent images. The descriptions and synthetic images act respectively as complementary textual and visual prompts, providing high-level class semantics and low-level intra-class diversity to compensate for limited support data. Furthermore, the CGA jointly aligns the fused textual, support, and synthetic visual representations by minimizing the kernelized volume of the 3-dimensional parallelotope they span. It captures global and nonlinear relationships among all representations, enabling structured and consistent multimodal integration. The proposed VT-FSL method establishes new state-of-the-art performance across ten diverse benchmarks, including standard, cross-domain, and fine-grained few-shot learning scenarios. Code is available at https://github.com/peacelwh/VT-FSL.

cs / cs.CV / cs.LG