iconLogo
Published:2025/11/8 0:25:01

悪意クライアントに負けない!連合学習最強テク✨

超要約: 悪意あるクライアント(悪いやつ)対策!連合学習で賢くデータ選ぶ方法だよ💖

🌟 ギャル的キラキラポイント✨ ● データプライバシーを守りつつ、賢く学習できるって神🥺 ● 悪意のあるクライアント攻撃にも強いって、まさに最強💪 ● ヘルスケアとか金融とか、色んな分野で役立つ未来感✨

詳細解説いくねー!✍️

背景 データは大事だけど、プライバシーも守りたい!そんな時に「連合学習(連合軍みたいなイメージ)」が役立つんだけど、悪いやつ(悪意のあるクライアント)が変なデータ送ってくると困っちゃう…😱 そんな問題を解決するのが今回の論文なんだよね!

続きは「らくらく論文」アプリで

RobustFSM: Submodular Maximization in Federated Setting with Malicious Clients

Duc A. Tran / Dung Truong / Duy Le

Submodular maximization is an optimization problem benefiting many machine learning applications, where we seek a small subset best representing an extremely large dataset. We focus on the federated setting where the data are locally owned by decentralized clients who have their own definitions for the quality of representability. This setting requires repetitive aggregation of local information computed by the clients. While the main motivation is to respect the privacy and autonomy of the clients, the federated setting is vulnerable to client misbehaviors: malicious clients might share fake information. An analogy is backdoor attack in conventional federated learning, but our challenge differs freshly due to the unique characteristics of submodular maximization. We propose RobustFSM, a federated submodular maximization solution that is robust to various practical client attacks. Its performance is substantiated with an empirical evaluation study using real-world datasets. Numerical results show that the solution quality of RobustFSM substantially exceeds that of the conventional federated algorithm when attacks are severe. The degree of this improvement depends on the dataset and attack scenarios, which can be as high as 200%

cs / cs.LG / cs.AI / cs.DC