💎 ギャル的キラキラポイント✨ ● GNSS(GPSみたいなやつ)情報が微妙な時でも、慣性センサー(スマホの傾きとか測るやつ)の精度を上げる方法を発見✨ ● 連続するGNSS測位の差分(ベースラインベクトル)を使って、初期化をスムーズに進めるらしい💖 ● 自動運転とかドローンとか、色んな分野で役立つから、めっちゃアツい研究なの🔥
背景 GNSSと慣性センサーを組み合わせれば、最強の位置情報システムができる!💪 でも、初期設定(初期化)がうまくいかないと、その後の精度がガタ落ち…😭 特にGNSSの電波が届きにくい場所とか、慣性センサーが暴走しがちな状況だと大変なのよね💦
方法 「Inter-Epoch Baseline Residuals」ってテクニックを使うよ!👩🔬 連続するGNSS測位の差分(ベースラインベクトル)に着目👀 これを使うことで、初期化の精度を爆上げ⤴️ GNSSの情報が揃うまで、この差分を使って慣性センサーの誤差を抑え込む作戦なのね😉
続きは「らくらく論文」アプリで
Initializing the state of a sensorized platform can be challenging, as a limited set of measurements often provide low-informative constraints that are in addition highly non-linear. This may lead to poor initial estimates that may converge to local minima during subsequent non-linear optimization. We propose an adaptive GNSS-inertial initialization strategy that delays the incorporation of global GNSS constraints until they become sufficiently informative. In the initial stage, our method leverages inter-epoch baseline vector residuals between consecutive GNSS fixes to mitigate inertial drift. To determine when to activate global constraints, we introduce a general criterion based on the evolution of the Hessian matrix's singular values, effectively quantifying system observability. Experiments on EuRoC, GVINS and MARS-LVIG datasets show that our approach consistently outperforms the naive strategy of fusing all measurements from the outset, yielding more accurate and robust initializations.