iconLogo
Published:2025/12/3 14:07:42

LLMプロンプトのコツ!心理学でテキスト分析を爆上げ💖

爆速要約: LLMのプロンプトを心理学で実験🚀✨ テキスト分析をめっちゃ良くする方法を見つけたよ!

✨ ギャル的キラキラポイント ✨ ● 色んなプロンプト(指示文)を試して、LLMの出来を比較したんだって!👩‍🔬 ● 心理学の知識を使って、LLMが構成概念(心の状態とか)を理解できるようにしたのがスゴい!🧠 ● 企業が顧客の言葉を分析して、商品やサービスを良くするのに役立つってこと!😎

詳細解説いくよ~! 背景 LLM(大規模言語モデル)は、文章を理解したり作ったりするのが得意👍 でも、どんな指示(プロンプト)を出すかで結果が全然違うの!この研究は、心理学の知識を使って、LLMの性能を上げようって試み🌟 IT企業が顧客の声を聞いて、もっと良いサービスを作るのに役立つかも!

方法 色んなプロンプト(指示文)を試したんだって!例えば、「〇〇って言葉はどういう意味?」みたいに質問したり、役割を与えて「あなたは心理学者です」って言ってみたり🤔 いろんな方法でLLMに文章を分析させて、どれが一番良い結果が出るか実験したらしい💻

続きは「らくらく論文」アプリで

Improving Alignment Between Human and Machine Codes: An Empirical Assessment of Prompt Engineering for Construct Identification in Psychology

Kylie L. Anglin / Stephanie Milan / Brittney Hernandez / Claudia Ventura

Due to their architecture and vast pre-training data, large language models (LLMs) demonstrate strong text classification performance. However, LLM output - here, the category assigned to a text - depends heavily on the wording of the prompt. While literature on prompt engineering is expanding, few studies focus on classification tasks, and even fewer address domains like psychology, where constructs have precise, theory-driven definitions that may not be well represented in pre-training data. We present an empirical framework for optimizing LLM performance for identifying constructs in texts via prompt engineering. We experimentally evaluate five prompting strategies --codebook-guided empirical prompt selection, automatic prompt engineering, persona prompting, chain-of-thought reasoning, and explanatory prompting - with zero-shot and few-shot classification. We find that persona, chain-of-thought, and explanations do not fully address performance loss accompanying a badly worded prompt. Instead, the most influential features of a prompt are the construct definition, task framing, and, to a lesser extent, the examples provided. Across three constructs and two models, the classifications most aligned with expert judgments resulted from a few-shot prompt combining codebook-guided empirical prompt selection with automatic prompt engineering. Based on our findings, we recommend that researchers generate and evaluate as many prompt variants as feasible, whether human-crafted, automatically generated, or ideally both, and select prompts and examples based on empirical performance in a training dataset, validating the final approach in a holdout set. This procedure offers a practical, systematic, and theory-driven method for optimizing LLM prompts in settings where alignment with expert judgment is critical.

cs / cs.CL