iconLogo
Published:2025/11/7 20:24:13

タイトル & 超要約:LLMの安全性を爆上げするテスト手法!🎉

🌟 ギャル的キラキラポイント✨ ● LLM(AI)が倫理的にOKかテストする、新しい方法を開発したんだって!✨ ● 色んな角度からLLMをイジメ倒して、弱点を見つけるらしい!👊 ● コレを使えば、安全で安心なAIサービスが作れるようになるってこと💖

詳細解説 ● 背景 最近のAI(LLM)はスゴイけど、嘘ついたり、差別的なこと言ったり、ちょっと怖い一面もあるじゃん?😱 だから、AIがちゃんとルールを守ってるかテストする方法が必要なの!

● 方法 GUARDっていうテスト方法を使うみたい。AIに色んな質問をしたり、ワルい言葉で試したりして、AIの弱点を探すんだって!色んなAIに対応してるから、色んなサービスで使えるのがポイント💖

● 結果 このテストのおかげで、AIのどんなところが危ないのかが分かるようになった!安心してAIを使えるように、安全対策を強化できるってワケ😉

続きは「らくらく論文」アプリで

GUARD: Guideline Upholding Test through Adaptive Role-play and Jailbreak Diagnostics for LLMs

Haibo Jin / Ruoxi Chen / Peiyan Zhang / Andy Zhou / Haohan Wang

As Large Language Models become increasingly integral to various domains, their potential to generate harmful responses has prompted significant societal and regulatory concerns. In response, governments have issued ethics guidelines to promote the development of trustworthy AI. However, these guidelines are typically high-level demands for developers and testers, leaving a gap in translating them into actionable testing questions to verify LLM compliance. To address this challenge, we introduce GUARD (\textbf{G}uideline \textbf{U}pholding Test through \textbf{A}daptive \textbf{R}ole-play and Jailbreak \textbf{D}iagnostics), a testing method designed to operationalize guidelines into specific guideline-violating questions that assess LLM adherence. To implement this, GUARD uses automated generation of guideline-violating questions based on government-issued guidelines, thereby testing whether responses comply with these guidelines. When responses directly violate guidelines, GUARD reports inconsistencies. Furthermore, for responses that do not directly violate guidelines, GUARD integrates the concept of ``jailbreaks'' to diagnostics, named GUARD-JD, which creates scenarios that provoke unethical or guideline-violating responses, effectively identifying potential scenarios that could bypass built-in safety mechanisms. Our method finally culminates in a compliance report, delineating the extent of adherence and highlighting any violations. We have empirically validated the effectiveness of GUARD on seven LLMs, including Vicuna-13B, LongChat-7B, Llama2-7B, Llama-3-8B, GPT-3.5, GPT-4, GPT-4o, and Claude-3.7, by testing compliance under three government-issued guidelines and conducting jailbreak diagnostics. Additionally, GUARD-JD can transfer jailbreak diagnostics to vision-language models, demonstrating its usage in promoting reliable LLM-based applications.

cs / cs.CL / cs.AI / cs.CV