iconLogo
Published:2025/11/8 2:00:31

ドローン通信を守る!SecureLinkでセキュリティ爆上げ✨

超要約: ドローンのセキュリティを最強にする「SecureLink」! 物理とアプリ情報を合体させて、なりすましを完全ブロック😎

🌟 ギャル的キラキラポイント✨ ● ドローンの声紋認証🎤みたいなイメージ!個体識別が超絶正確になるってコト💖 ● AI(深層学習)が賢く学習!環境の変化にも柔軟に対応できるのがスゴすぎ😍 ● なりすましドローンを瞬時に見破る!安心してドローンを使える未来が来るかも✨

詳細解説 ● 背景 最近、ドローン(UAV)めっちゃ色んな場所で活躍してるじゃん? 物流、点検、エンタメ…でも、無線通信だからセキュリティが心配😥 そこで、なりすましとか不正アクセスを防ぐ技術が必要になったの!

● 方法 SecureLinkは、RF(無線)とMEMS(センサー)の情報を組み合わせた「クロスレイヤーフィンガープリント」技術を使ってるの! 簡単に言うと、ドローンの「声」と「動き」を同時にチェックして、本物かどうかを見分ける感じ✨ さらに、AIが学習して、どんな環境でもちゃんと認証できるようにしてるみたい💖

続きは「らくらく論文」アプリで

Securing UAV Communications by Fusing Cross-Layer Fingerprints

Yong Huang / Ruihao Li / Mingyang Chen / Feiyang Zhao / Dalong Zhang / Wanqing Tu

The open nature of wireless communications renders unmanned aerial vehicle (UAV) communications vulnerable to impersonation attacks, under which malicious UAVs can impersonate authorized ones with stolen digital certificates. Traditional fingerprint-based UAV authentication approaches rely on a single modality of sensory data gathered from a single layer of the network model, resulting in unreliable authentication experiences, particularly when UAVs are mobile and in an open-world environment. To transcend these limitations, this paper proposes SecureLink, a UAV authentication system that is among the first to employ cross-layer information for enhancing the efficiency and reliability of UAV authentication. Instead of using single modalities, SecureLink fuses physical-layer radio frequency (RF) fingerprints and application-layer micro-electromechanical system (MEMS) fingerprints into reliable UAV identifiers via multimodal fusion. SecureLink first aligns fingerprints from channel state information measurements and telemetry data, such as feedback readings of onboard accelerometers, gyroscopes, and barometers. Then, an attention-based neural network is devised for in-depth feature fusion. Next, the fused features are trained by a multi-similarity loss and fed into a one-class support vector machine for open-world authentication. We extensively implement our SecureLink using three different types of UAVs and evaluate it in different environments. With only six additional data frames, SecureLink achieves a closed-world accuracy of 98.61% and an open-world accuracy of 97.54% with two impersonating UAVs, outperforming the existing approaches in authentication robustness and communication overheads. Finally, our datasets collected from these experiments are available on GitHub: https://github.com/PhyGroup/SecureLink\_data.

cs / cs.CR