iconLogo
Published:2025/8/22 21:14:32

予測型モジュールでAIを安全に✨ バイオシミラー製造にも応用!

超要約: AIの安全性を高める技術で、製造業を始め色んな分野をレベルアップさせちゃうよ!

💎 ギャル的キラキラポイント✨ ● AIの暴走(制約無視)を防ぐ魔法🧙‍♀️ ● いろんな分野で使える汎用性の高さ! ● 経済的損失を減らして、安全な未来をGET!

詳細解説 背景 AIって、すごいけど、ちょっと危なっかしい一面もあるんだよね💦 例えば、製造業とかで「温度を守って!」って命令しても、AIが勝手に無視しちゃうこととかあるじゃん? それを解決したい! っていう研究だよ♪

方法 AIがちゃんとルールを守れるように、3つの秘策を組み合わせたよ! 1つ目は「予測型フィルター」、2つ目は「適応型制約マージン」、3つ目は「制約違反コストモニター」! これで、AIが暴走しそうになったら、優しく止めて、安全に動けるようにするんだ💖

続きは「らくらく論文」アプリで

A predictive modular approach to constraint satisfaction under uncertainty - with application to glycosylation in continuous monoclonal antibody biosimilar production

Yu Wang / Xiao Chen / Hubert Schwarz / V\'eronique Chotteau / Elling W. Jacobsen

The paper proposes a modular-based approach to constraint handling in process optimization and control. This is partly motivated by the recent interest in learning-based methods, e.g., within bioproduction, for which constraint handling under uncertainty is a challenge. The proposed constraint handler, called predictive filter, is combined with an adaptive constraint margin and a constraint violation cost monitor to minimize the cost of violating soft constraints due to model uncertainty and disturbances. The module can be combined with any controller and is based on minimally modifying the controller output, in a least squares sense, such that constraints are satisfied within the considered horizon. The proposed method is computationally efficient and suitable for real-time applications. The effectiveness of the method is illustrated through a realistic simulation case study of glycosylation constraint satisfaction in continuous monoclonal antibody biosimilar production using Chinese hamster ovary cells, for which the metabolic network model consists of 23 extracellular metabolites and 126 reactions.

cs / eess.SY / cs.SY / math.OC / q-bio.QM