**超要約:**赤ちゃんの言葉覚えをマネして、AIの会話をめっちゃ自然にする研究だよ!
ギャル的キラキラポイント✨
● 赤ちゃんが言葉を覚えるみたいに、AIも会話を学習するなんて、なんかエモくない?🥺 ● 会話が自然になるから、チャットボットとか、もっと使いやすくなるってことだよね!💖 ● 将来、AIと恋バナできる時代が来るかも…?(笑)😍
詳細解説
続きは「らくらく論文」アプリで
Multi-turn dialogues between a child and a caregiver are characterized by a property called contingency - that is, prompt, direct, and meaningful exchanges between interlocutors. We introduce ContingentChat, a teacher-student framework that benchmarks and improves multi-turn contingency in a BabyLM trained on 100M words. Using a novel alignment dataset for post-training, BabyLM generates responses that are more grammatical and cohesive. Experiments with adaptive teacher decoding strategies show limited additional gains. ContingentChat demonstrates the benefits of targeted post-training for dialogue quality and indicates that contingency remains a challenging goal for BabyLMs.