超要約: B5Gで色んなアプリにぴったりの通信環境を作る方法だよ!
🌟 ギャル的キラキラポイント✨ ● 複数の基地局(BS)を賢く選んで、通信をめっちゃスムーズにするんだって! ● 深層学習(DNN)を使って、通信の速さとか安定性を予測するからすごい😳 ● 色んなアプリの「こうしたい!」を叶えて、ネットライフがマジ卍になる予感💖
詳細解説 • 背景 B5Gネットワークは、色んなアプリが使えるように、通信の速さとか安定性(QoS)を良くしたいんだよね!でも、従来のやり方だと、ちょっとだけ物足りない…😢そこで、複数のBSに同時に繋げるマルチコネクティビティって技術が注目されてるんだけど、もっと良くできる方法を探してるんだって!
• 方法 深層学習(DNN)を使って、各BSの通信状況を予測するんだって!予測結果をもとに、最適なBSを選んだり、データ(情報)を分配したりして、アプリに合った通信環境を作るんだって!
続きは「らくらく論文」アプリで
The rapid advancement of communication technologies has established cellular networks as the backbone for diverse applications, each with distinct quality of service requirements. Meeting these varying demands within a unified infrastructure presents a critical challenge that can be addressed through advanced techniques such as multi-connectivity. Multiconnectivity enables User equipments to connect to multiple BSs simultaneously, facilitating QoS differentiation and provisioning. This paper proposes a QoS-aware multi-connectivity framework leveraging machine learning to enhance network performance. The approach employs deep neural networks to estimate the achievable QoS metrics of BSs, including data rate, reliability, and latency. These predictions inform the selection of serving clusters and data rate allocation, ensuring that the User Equipment connects to the optimal BSs to meet its QoS needs. Performance evaluations demonstrate that the proposed algorithm significantly enhances Quality of Service (QoS) for applications where traditional and state-of-the-art methods are inadequate. Specifically, the algorithm achieves a QoS success rate of 98%. Furthermore, it improves spectrum efficiency by 30% compared to existing multi-connectivity solutions.