iconLogo
Published:2025/10/23 8:15:56

DirectLayoutでテキストから3Dシーン爆誕!💖🤖✨

タイトル & 超要約:テキストから3D空間(3Dのへや)を爆速(ばくはや)生成するDirectLayout爆誕!

✨ ギャル的キラキラポイント ✨ ● 難しい数式なし!LLM (大規模言語モデル) が空間推論(くうかんすいろん)してくれるから、すごい3D空間が作れちゃう✨ ● "Chain-of-Thought" ってテクで、思考プロセス(しこうぷろせす)を細かく分けて、より正確(せいかく)に空間作れるんだって!😳 ● 物理的に正しいかとか、見た目もちゃんと良いかとか、AIがチェックしてくれるから、めっちゃ良いものができあがる💖

詳細解説 ● 背景 3Dのへやを作るのって大変じゃん? でもDirectLayoutは、テキストで「こんなへやがいいな」って書くだけで、いい感じの3D空間を生成してくれるんだよ!今まで難しかった、細か~い指示(しじ)とか、色んなパターンの部屋作りも、コレなら楽勝(らくしょう)😎

● 方法 LLM (大規模言語モデル) を使って、テキストから直接(ちょくせつ)3D空間の数値データを作っちゃうんだって! 「Chain-of-Thought」って方法で、オブジェクトの選定(せんてい)とか配置とかを順番にやっていくから、AIも混乱(こんらん)しないってワケ😉

続きは「らくらく論文」アプリで

Direct Numerical Layout Generation for 3D Indoor Scene Synthesis via Spatial Reasoning

Xingjian Ran / Yixuan Li / Linning Xu / Mulin Yu / Bo Dai

Realistic 3D indoor scene synthesis is vital for embodied AI and digital content creation. It can be naturally divided into two subtasks: object generation and layout generation. While recent generative models have significantly advanced object-level quality and controllability, layout generation remains challenging due to limited datasets. Existing methods either overfit to these datasets or rely on predefined constraints to optimize numerical layout that sacrifice flexibility. As a result, they fail to generate scenes that are both open-vocabulary and aligned with fine-grained user instructions. We introduce DirectLayout, a framework that directly generates numerical 3D layouts from text descriptions using generalizable spatial reasoning of large language models (LLMs). DirectLayout decomposes the generation into three stages: producing a Bird's-Eye View (BEV) layout, lifting it into 3D space, and refining object placements. To enable explicit spatial reasoning and help the model grasp basic principles of object placement, we employ Chain-of-Thought (CoT) Activation based on the 3D-Front dataset. Additionally, we design CoT-Grounded Generative Layout Reward to enhance generalization and spatial planning. During inference, DirectLayout addresses asset-layout mismatches via Iterative Asset-Layout Alignment through in-context learning. Extensive experiments demonstrate that DirectLayout achieves impressive semantic consistency, generalization and physical plausibility.

cs / cs.CV / cs.AI