● スマホのセンサー📱だけで、歩いてる、走ってる🏃♀️とかがわかる! ● 犯人捜査👮♀️とかにも役立つ、証拠能力もバッチリ👍 ● 新しいデータセットで、色んな活動をさらに細かく区別できるんだって!
背景 スマホって、マジ色んな情報持ってるじゃん? この研究は、スマホのセンサー(加速度計とか)の動きを分析して、ユーザーが今何してるか(歩いてる、電車乗ってる…とか)を高い精度で当てるAIを作ったんだって!
方法 特殊なAI(機械学習モデル)を使って、スマホの動きから「尤度比(ゆうどひ)」っていう、行動の確からしさを表す数値を計算するんだって! 19種類のアクティビティ(活動)を区別できるように、新しいデータセットも作ったらしい💖
続きは「らくらく論文」アプリで
Smartphones and smartwatches are ever-present in daily life, and provide a rich source of information on their users' behaviour. In particular, digital traces derived from the phone's embedded movement sensors present an opportunity for a forensic investigator to gain insight into a person's physical activities. In this work, we present a machine learning-based approach to translate digital traces into likelihood ratios (LRs) for different types of physical activities. Evaluating on a new dataset, NFI\_FARED, which contains digital traces from four different types of iPhones labelled with 19 activities, it was found that our approach could produce useful LR systems to distinguish 167 out of a possible 171 activity pairings. The same approach was extended to analyse likelihoods for multiple activities (or groups of activities) simultaneously and create activity timelines to aid in both the early and latter stages of forensic investigations. The dataset and all code required to replicate the results have also been made public to encourage further research on this topic.