超要約: 打ち切りデータ(途中で終わっちゃうデータ)を、データ拡張(データ増やすこと)で超絶分析するAIモデル、DAERNNが登場!ビジネスで大活躍しちゃうよ!
✨ ギャル的キラキラポイント ✨
● 打ち切りデータも怖くない!データ拡張で情報量UP💖 ● 予測精度が神レベル!顧客の未来が見えちゃうかも👀 ● ビジネスチャンス爆増!新しいサービスが作れちゃうかも✨
詳細解説いくよ~!
続きは「らくらく論文」アプリで
Expectile regression neural networks (ERNNs) are powerful tools for capturing heterogeneity and complex nonlinear structures in data. However, most existing research has primarily focused on fully observed data, with limited attention paid to scenarios involving censored observations. In this paper, we propose a data augmentation based ERNNs algorithm, termed DAERNN, for modeling heterogeneous censored data. The proposed DAERNN is fully data driven, requires minimal assumptions, and offers substantial flexibility. Simulation studies and real data applications demonstrate that DAERNN outperforms existing censored ERNNs methods and achieves predictive performance comparable to models trained on fully observed data. Moreover, the algorithm provides a unified framework for handling various censoring mechanisms without requiring explicit parametric model specification, thereby enhancing its applicability to practical censored data analysis.