iconLogo
Published:2025/11/7 23:06:48

言語生成、計算コストの謎を解き明かす!✨

タイトル & 超要約: 言語生成の「学習」って難しいよね?計算量(コスト)の壁を分析する研究だよ!

ギャル的キラキラポイント✨ ● LLM(大規模言語モデル)の学習って、なんでこんなに大変なの?って疑問に答えてくれるかも!🤔 ● IT企業が新しいサービスを作るヒントになるかも!💰 ● 言葉の構造って奥深い!って感動しちゃうかも!🥺

詳細解説 背景 LLMはスゴイけど、学習にはお金と時間がかかる…💸なんで? その秘密を解き明かそうって研究なの! 言語生成の「計算コスト」に注目してるよ👀

方法 正規言語とか文脈自由言語っていう、ちょっとシンプルな言葉で実験! どれくらいのデータ量で学習できるか、計算してみたんだって💻💡

続きは「らくらく論文」アプリで

Language Generation: Complexity Barriers and Implications for Learning

Marcelo Arenas / Pablo Barcel\'o / Luis Cofr\'e / Alexander Kozachinskiy

Kleinberg and Mullainathan showed that, in principle, language generation is always possible: with sufficiently many positive examples, a learner can eventually produce sentences indistinguishable from those of a target language. However, the existence of such a guarantee does not speak to its practical feasibility. In this work, we show that even for simple and well-studied language families -- such as regular and context-free languages -- the number of examples required for successful generation can be extraordinarily large, and in some cases not bounded by any computable function. These results reveal a substantial gap between theoretical possibility and efficient learnability. They suggest that explaining the empirical success of modern language models requires a refined perspective -- one that takes into account structural properties of natural language that make effective generation possible in practice.

cs / cs.CL / cs.AI / cs.FL / cs.LG