iconLogo
Published:2025/11/7 20:07:46

ゼロショDRで検索爆上がり!🚀

ゼロショDRを表現シャープニングでブチアゲ!

🌟 ギャル的キラキラポイント✨ ● 学習データなしで検索精度が上がるって、まじ神✨ ● コントラスティブクエリで表現を強化するって、なんかオシャレじゃん? ● 既存の検索システムにもすぐ使えるって、最強🫶

詳細解説いくよ~!

背景 検索(けんさく)って、今や生活のインフラ💎 クエリ(質問)とドキュメント(文書)を比較して、関連性(かんれんせい)の高いものを表示するDR(密な検索)がスゴイんだけど… データないとダメ🙅‍♀️ ゼロショ(ゼロショット)DRっていう、データなしでも頑張る方法もあるけど、精度(せいど)がイマイチだったのよね😭

続きは「らくらく論文」アプリで

A Representation Sharpening Framework for Zero Shot Dense Retrieval

Dhananjay Ashok / Suraj Nair / Mutasem Al-Darabsah / Choon Hui Teo / Tarun Agarwal / Jonathan May

Zero-shot dense retrieval is a challenging setting where a document corpus is provided without relevant queries, necessitating a reliance on pretrained dense retrievers (DRs). However, since these DRs are not trained on the target corpus, they struggle to represent semantic differences between similar documents. To address this failing, we introduce a training-free representation sharpening framework that augments a document's representation with information that helps differentiate it from similar documents in the corpus. On over twenty datasets spanning multiple languages, the representation sharpening framework proves consistently superior to traditional retrieval, setting a new state-of-the-art on the BRIGHT benchmark. We show that representation sharpening is compatible with prior approaches to zero-shot dense retrieval and consistently improves their performance. Finally, we address the performance-cost tradeoff presented by our framework and devise an indexing-time approximation that preserves the majority of our performance gains over traditional retrieval, yet suffers no additional inference-time cost.

cs / cs.IR / cs.CL