● 未知のモノも「あ、アレだ!」って認識できるようになるのがスゴくない?😳 ● いろんな分野で役立ちまくり!IT業界、アゲ⤴️ ● まだまだ発展途上だけど、未来は明るいってこと🫶
従来のAI(エーアイ)は、決まったものしか見つけられなかったの😥 でも、OWD(オープンワールド検出)は違う!未知のモノやコトも「これってナニ?」って理解しようとするんだって!✨
研究では、OWDの技術をまとめたよ📖 いろんな研究を参考に、OWDがどんな風に進化してきたか、どんな技術を使ってるのかを解説してるんだって!🤔
続きは「らくらく論文」アプリで
For decades, Computer Vision has aimed at enabling machines to perceive the external world. Initial limitations led to the development of highly specialized niches. As success in each task accrued and research progressed, increasingly complex perception tasks emerged. This survey charts the convergence of these tasks and, in doing so, introduces Open World Detection (OWD), an umbrella term we propose to unify class-agnostic and generally applicable detection models in the vision domain. We start from the history of foundational vision subdomains and cover key concepts, methodologies and datasets making up today's state-of-the-art landscape. This traverses topics starting from early saliency detection, foreground/background separation, out of distribution detection and leading up to open world object detection, zero-shot detection and Vision Large Language Models (VLLMs). We explore the overlap between these subdomains, their increasing convergence, and their potential to unify into a singular domain in the future, perception.