iconLogo
Published:2025/10/23 9:50:07

Zhyper爆誕!LLMファインチューニング革命☆

超効率化!LLMの学習を爆速&低コストに!

✨ ギャル的キラキラポイント ✨ ● パラメータ数、最大26分の1!?コスパ最強じゃん! ● テキスト指示でLoRAアダプターを生成!色んなコトに対応できるの天才! ● 文化の違いも理解!グローバル展開にもってこい🌏

詳細解説いくよ~!

背景 LLMってスゴイけど、学習(ファインチューニング)にはお金も時間もかかるのよね😢 でも、LoRAとかで効率化しようとしても、まだ色んな課題があったみたい。IT業界では、もっと色んなタスクとか、色んな文化に対応できるLLMが求められてるらしい!

続きは「らくらく論文」アプリで

Zhyper: Factorized Hypernetworks for Conditioned LLM Fine-Tuning

M. H. I. Abdalla / Zhipin Wang / Christian Frey / Steffen Eger / Josif Grabocka

Large Language Model (LLM) conditioning refers to instructing an LLM to generate content in accordance with the norms and values of a specific culture, beliefs of a particular political orientation, or any desired text-specified semantic conditioning. Unfortunately, prompt engineering does not ensure that LLMs behave in accordance with a desired conditioning due to the inductive bias of the pre-training and alignment datasets. Prior works have focused on fine-tuning LLMs by directly conditioning the LoRA weights; however, such methods introduce a large number of parameters. As a remedy, we propose Zhyper, a parameter-efficient factorized hypernetwork framework that generates context-aware LoRA adapters from textual descriptions. Experiments on multiple benchmarks show that Zhyper achieves competitive performance with up to 26x fewer parameters than the state-of-the-art baselines. Furthermore, we extend Zhyper to cultural alignment, demonstrating improved generalization to out-of-domain settings and a better capturing of fine-grained contextual values.

cs / cs.CL / cs.LG