iconLogo
Published:2025/12/3 15:37:13

静的DRA爆誕!LLM研究を効率化✨

超要約: LLMで研究を爆速化するStatic-DRA!計算コストも抑えつつ、質の高い研究を可能にするんだって💖

🌟 ギャル的キラキラポイント✨ ● 静的ワークフローで計算コスト削減!コスパ最強~!💰 ● 「深さ」と「幅」で研究をカスタマイズ!自分好みにアレンジできるの天才🫶 ● IT業界の課題解決に貢献!ビジネスチャンスも広がる予感🌟

詳細解説

背景 LLM(大規模言語モデル)ってすごいけど、研究で使うとコストがかかる…💸そこで、Static-DRA(静的深層研究エージェント)が登場!従来のRAG(検索拡張生成)の弱点を克服し、効率的な研究を可能にするんだって!

続きは「らくらく論文」アプリで

A Hierarchical Tree-based approach for creating Configurable and Static Deep Research Agent (Static-DRA)

Saurav Prateek

The advancement in Large Language Models has driven the creation of complex agentic systems, such as Deep Research Agents (DRAs), to overcome the limitations of static Retrieval Augmented Generation (RAG) pipelines in handling complex, multi-turn research tasks. This paper introduces the Static Deep Research Agent (Static-DRA), a novel solution built upon a configurable and hierarchical Tree-based static workflow. The core contribution is the integration of two user-tunable parameters, Depth and Breadth, which provide granular control over the research intensity. This design allows end-users to consciously balance the desired quality and comprehensiveness of the research report against the associated computational cost of Large Language Model (LLM) interactions. The agent's architecture, comprising Supervisor, Independent, and Worker agents, facilitates effective multi-hop information retrieval and parallel sub-topic investigation. We evaluate the Static-DRA against the established DeepResearch Bench using the RACE (Reference-based Adaptive Criteria-driven Evaluation) framework. Configured with a depth of 2 and a breadth of 5, and powered by the gemini-2.5-pro model, the agent achieved an overall score of 34.72. Our experiments validate that increasing the configured Depth and Breadth parameters results in a more in-depth research process and a correspondingly higher evaluation score. The Static-DRA offers a pragmatic and resource-aware solution, empowering users with transparent control over the deep research process. The entire source code, outputs and benchmark results are open-sourced at https://github.com/SauravP97/Static-Deep-Research/

cs / cs.AI