超要約: LLMでグラフ解析を爆速&賢くするGraphChain!😎
🌟 ギャル的キラキラポイント ● LLM(大規模言語モデル)が賢くツールを使いこなす!賢すぎ💖 ● 色んなグラフ構造に対応できるから、マジ使える!優秀~🫶 ● 金融詐欺とか、色んな問題解決に貢献しちゃう!社会貢献もバッチリ👍
詳細解説いくよ~!
背景: グラフ構造(関係性のデータ)って、色んな分野で重要じゃん? でもLLMはデカすぎるグラフだと処理が大変だったり、間違った答え(Hallucination)をしちゃうって問題があったんだよね😭
続きは「らくらく論文」アプリで
Large Language Models (LLMs) face significant limitations when applied to large-scale graphs, struggling with context constraints and inflexible reasoning. We present GraphChain, a framework that enables LLMs to analyze complex graphs through dynamic sequences of specialized tools, mimicking human exploratory intelligence. Our approach introduces two key innovations: (1) Progressive Graph Distillation, a reinforcement learning mechanism that generates optimized tool sequences balancing task relevance with information compression, and (2) Structure-aware Test-Time Adaptation, which efficiently tailors tool selection strategies to diverse graph topologies using spectral properties and lightweight adapters without costly retraining. Experiments show GraphChain significantly outperforms prior methods, enabling scalable and adaptive LLM-driven graph analysis.