超要約: ロボが賢く動く秘密!DRLとファジーを合体✨
✨ ギャル的キラキラポイント ✨ ● 4つの車輪が独立して動くロボ、カッコよすぎ!全方向移動とか、まさに未来🚀 ● DRL(深層強化学習)とファジー推論の組み合わせがアツい🔥賢く安全に動くんだって! ● IT業界の未来を変えるかも!工場とか配送とか、色んな場所で活躍できる予感🌟
詳細解説いくよ~!
背景 4つのタイヤが自由自在に動くロボ(4WISD)って、すごそうじゃん?でも、制御(コントロール)が難しくて、動きが不安定になったり、障害物(邪魔なもの)をよけるのが大変だったりするんだよね😢
続きは「らくらく論文」アプリで
This paper presents a hierarchical decision-making framework for autonomous navigation in four-wheel independent steering and driving (4WISD) systems. The proposed approach integrates deep reinforcement learning (DRL) for high-level navigation with fuzzy logic for low-level control to ensure both task performance and physical feasibility. The DRL agent generates global motion commands, while the fuzzy logic controller enforces kinematic constraints to prevent mechanical strain and wheel slippage. Simulation experiments demonstrate that the proposed framework outperforms traditional navigation methods, offering enhanced training efficiency and stability and mitigating erratic behaviors compared to purely DRL-based solutions. Real-world validations further confirm the framework's ability to navigate safely and effectively in dynamic industrial settings. Overall, this work provides a scalable and reliable solution for deploying 4WISD mobile robots in complex, real-world scenarios.