🌟 ギャル的キラキラポイント✨ ● LLM(大規模言語モデル)で、カルテとかのグチャグチャな文字情報を自動で整理できちゃう! ● IT企業がこの技術を使って、医療AIとかデータ分析で大儲けできるチャンス到来! ● セキュリティもバッチリ!HIPAA(医療情報保護法的なやつ)にも対応してるから安心💖
詳細解説 背景 医療データって、めっちゃ大事な情報がいっぱい詰まってるんだけど、整理するのが大変だったの😭 紙カルテとか電子カルテ(EHR)のデータがバラバラで、研究とかに使うには手間がかかりすぎ!
方法 LLMを使って、このバラバラデータを自動で構造化(整理)するんだって! 手作業でやるより、時間もコストも大幅削減できるし、精度もアップ⤴️
続きは「らくらく論文」アプリで
Manual chart review remains an extremely time-consuming and resource-intensive component of clinical research, requiring experts to extract often complex information from unstructured electronic health record (EHR) narratives. We present a secure, modular framework for automated structured feature extraction from clinical notes leveraging locally deployed large language models (LLMs) on institutionally approved, Health Insurance Portability and Accountability Act (HIPPA)-compliant compute infrastructure. This system integrates retrieval augmented generation (RAG) and structured response methods of LLMs into a widely deployable and scalable container to provide feature extraction for diverse clinical domains. In evaluation, the framework achieved high accuracy across multiple medical characteristics present in large bodies of patient notes when compared against an expert-annotated dataset and identified several annotation errors missed in manual review. This framework demonstrates the potential of LLM systems to reduce the burden of manual chart review through automated extraction and increase consistency in data capture, accelerating clinical research.