音楽AI、知覚を学習して進化!🤖🎶
タイトル & 超要約 音楽AIを爆上げ!ノイズで音楽の聴き方を学習して、未来の音楽体験を創る研究🎤✨
ギャル的キラキラポイント✨ ● 音楽の「驚き」をAIがキャッチ!VRとかゲームに使えるかも🌟 ● ノイズ(雑音)を味方に!AIが音楽の深い意味を理解するってエモくない?😭 ● レコメンド(おすすめ)が神レベルに!音楽との新しい出会いがあるかも🎵
詳細解説
リアルでの使いみちアイデア💡
続きは「らくらく論文」アプリで
We argue that training autoencoders to reconstruct inputs from noised versions of their encodings, when combined with perceptual losses, yields encodings that are structured according to a perceptual hierarchy. We demonstrate the emergence of this hierarchical structure by showing that, after training an audio autoencoder in this manner, perceptually salient information is captured in coarser representation structures than with conventional training. Furthermore, we show that such perceptual hierarchies improve latent diffusion decoding in the context of estimating surprisal in music pitches and predicting EEG-brain responses to music listening. Pretrained weights are available on github.com/CPJKU/pa-audioic.