超要約: ロボが過去の記憶で現在地を把握するモデル🤖💖
🌟 ギャル的キラキラポイント✨ ● 過去のデータを賢く(かしこく)活用するんだって!✨ ● Transformer(変換器)っていうすごい技術を使ってるらしい😳 ● ロボの動きが、もっと賢く、スムーズになるってこと🫶
詳細解説 ● 背景 ロボが広い空間を移動する時、過去に見た景色を「あ~、ここ知ってる!」って思い出して、自分の位置を正確に把握するのって難しいじゃん?🧐 そんな課題を解決するために、この研究が始まったんだって!
● 方法 Kinaema(キナエマ)っていう、新しいモデルを開発したみたい! Transformerを使って、過去の情報をぎゅっと圧縮(あっしゅく)して、ロボが「今どこにいるの?」って聞かれた時に、すぐに答えられるようにしたんだって!✨
続きは「らくらく論文」アプリで
One key aspect of spatially aware robots is the ability to "find their bearings", ie. to correctly situate themselves in previously seen spaces. In this work, we focus on this particular scenario of continuous robotics operations, where information observed before an actual episode start is exploited to optimize efficiency. We introduce a new model, Kinaema, and agent, capable of integrating a stream of visual observations while moving in a potentially large scene, and upon request, processing a query image and predicting the relative position of the shown space with respect to its current position. Our model does not explicitly store an observation history, therefore does not have hard constraints on context length. It maintains an implicit latent memory, which is updated by a transformer in a recurrent way, compressing the history of sensor readings into a compact representation. We evaluate the impact of this model in a new downstream task we call "Mem-Nav". We show that our large-capacity recurrent model maintains a useful representation of the scene, navigates to goals observed before the actual episode start, and is computationally efficient, in particular compared to classical transformers with attention over an observation history.